Quadratic Lower Bounds on the Approximate Stabilizer Rank

(a Probabilistic Approach)

56th Annual ACM Symposium on Theory of Computing (STOC 2024) June 24-28, 2024, Vancouver, Canada

SAEED MEHRABAN TUFTS CS

MEHRDAD TAHMASBI UIUC CS arXiv: 2305.10277

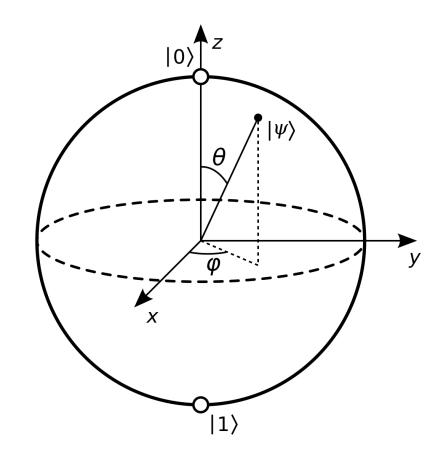
Main question:

How hard is it to simulate quantum computations on classical computers?

Can we rigorously separate P and BQP?

Can we rigorously show specific simulation techniques will take exponential time? **This talk** What is a quantum bit?

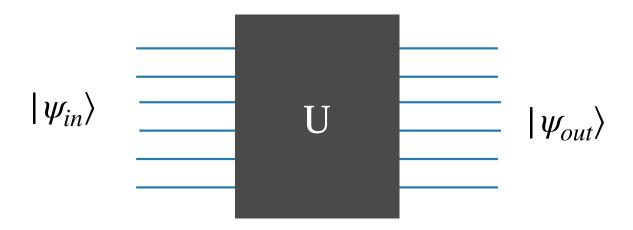
$$|\psi\rangle = {\alpha \choose \beta} \in \mathbb{C}^2$$
$$= \alpha |0\rangle + \beta |1\rangle$$
$$|\alpha|^2 + |\beta|^2 = 1$$



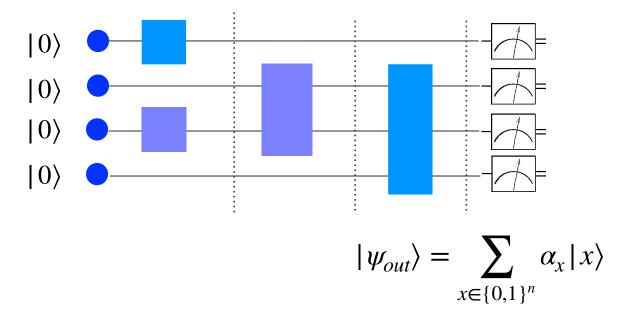
Quantum operations are given by unitary matrices

$$|\psi_{out}\rangle = U|\psi_{in}\rangle$$

 $U^{\dagger} = U^{-1}$



 $Pr(x) = |\alpha_x|^2$



Quantum circuits

Special quantum operations

Pauli
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
Clifford
$$S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad H = \frac{1}{-1} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad CNOT = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $S = \begin{pmatrix} 0 & i \end{pmatrix} \quad \prod -\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \end{pmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Clifford + T gates are universal for quantum computing

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Gottesman-Knill Theorem:

Starting with Stabilizer states, Clifford gates can be simulated efficiently

What is a stabilizer state?

We say *A* stabilizes $|\psi\rangle$, if $A |\psi\rangle = |\psi\rangle$

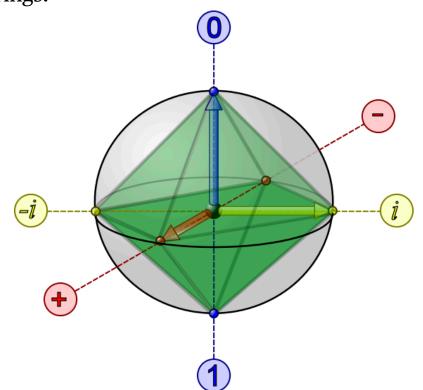
Pauli group $\mathscr{P} = \{e^{im\pi/2}A_1 \otimes \ldots \otimes A_n : A_i \in \{I, X, Y, Z\}, m \in \{0, 1, 2, 3\}\}$

A quantum state is called a stabilizer state if there is a (Abelian) subgroup of \mathscr{P} that stabilizes it.

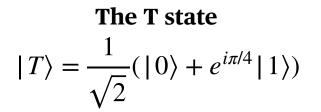
Fact: Stabilizer states are exactly states that can be generated by Clifford operations, starting from $|0...0\rangle$

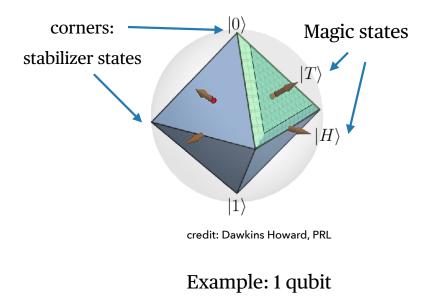
Single qubit stabilizer states:

"Special discrete subset of quantum states that are stabilized by Pauli strings."



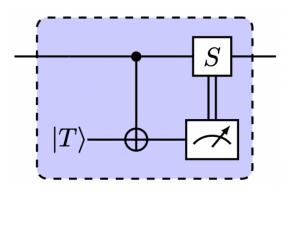
Credit: Jonas Anderson et. al. UNM

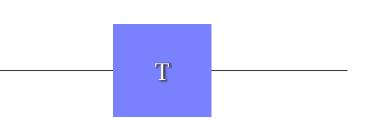


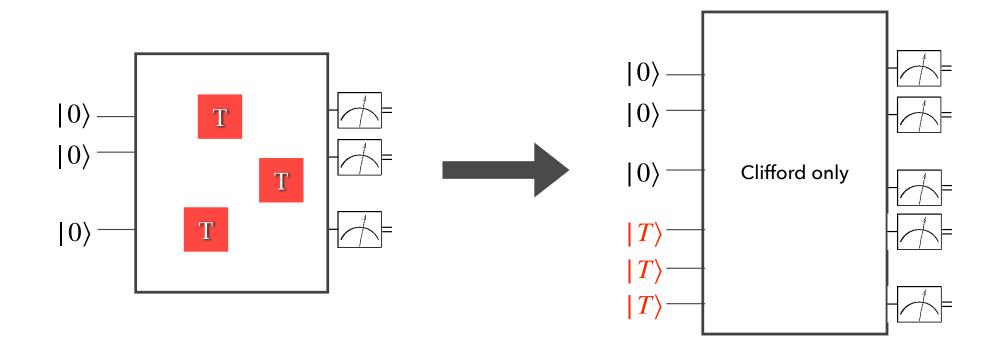


Magic state teleportation:

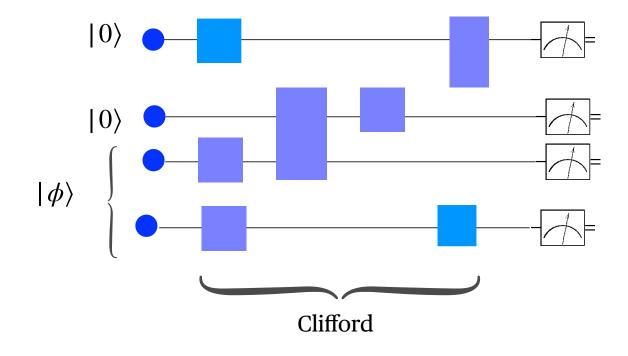
Clifford circuits on specific "magic" sates can simulate universal quantum computations.







How hard is it to simulate the following circuit? If $|\phi\rangle$ is a stabilizer state then we can do it in polynomial time. What if $|\phi\rangle$ is not a stabilizer state? It depends on the **stabilizer rank** of $|\phi\rangle$!



Approximate Stabilizer rank:

 $\chi_{\delta}(|\phi\rangle)$ minimum number *r* s.t. $|\phi\rangle \approx_{\delta} c_1 |s_1\rangle + \ldots + c_r |s_r\rangle s_i$ stabilizer states.

Exact rank: $\delta = 0$

Bravyi Gosset 2016:

Universal quantum circuits using *mT* gates can be approximately simulated within error $O(\delta)$ in time $poly(n) \times \chi_{\delta}(|T\rangle^{\otimes m})$.

Proof idea: Teleport T gates to simulate the computation using Clifford gates on $|T\rangle^{\otimes m}$ states. Decompose the computation into χ_n Gottesman-Knill algorithms (each taking poly(n) time).

Upperbound:

 $\chi(|T\rangle^{\otimes n}) = O(2^{0.3963n})$ (Qassim-Pashayan-Gosset 2018)

Question: Can we show that $\chi(|T\rangle^{\otimes n}) = 2^{\Omega(n)}$?

We better do, otherwise BQP has a fast classical simulation :-)

Previous bounds on stabilizer rank

	Exact	Approximate	Technique
Bravyi Smith Smolin 2016	$\Omega(\sqrt{n})$		
Peleg, Shpilka, Volk, 2022	$\Omega(n)$	$ ilde{\Omega}(\sqrt{n})$	Linear algebra techniques, complexity reductions
Labib, 2022	$\Omega(n)$		Higher order Fourier analysis
Lovitz, Steffan 2022	$ ilde{\Omega}(n)$	$ ilde{\Omega}(\sqrt{n})$	Number theory
M, Tahmasbi 2023	$ ilde{\Omega}(n^2)$	$ ilde{\Omega}(n^2)$	Probabilistic method + quantum state synthesis

Major open question $P \neq NP$?

Can we show that NP-complete problems do not have short representation within a specific model? (e.g. circuits with specific structure, ...)

Specific model: linear combination of an overcomplete functional basis. In particular quadratic phases **Williams CCC 2018:** For any *k* there is a function $f: \{0,1\}^n \to \{0,1\}$ in *NP* such that in any decomposition $f(x) = \sum_{i=1}^r c_i(-1)^{Q_i(x)}$ into quadratic phases $r \ge n^k$.

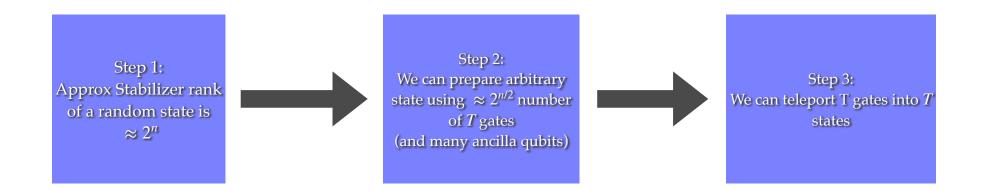
Open question: Can we prove the same thing for functions in P? Can give an example of a function in P which requires $r = \omega(n)$ representation?

M, Tahmasbi 2023: an example of a function that requires $\tilde{\Omega}(n^2)$ terms

Open question: <u>Quadratic uncertainty principle</u>

Show that the AND i.e. $(-1)^{x_1...x_n}$ function requires exponential representation into quadratic phases

Proof of our result:



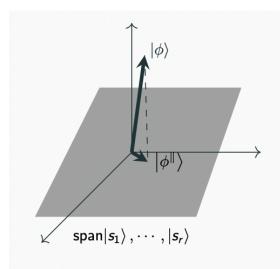
Step 2 is based on a non-trivial result of Low, Kliuchnikov and Schaeffer from 2018 (LKS 18) that we can synthesize arbitrary quantum states using $2^{n/2}$ T gates and many ancilla qubits

Theorem 1: If $|\phi\rangle$ is sampled from the Haar measure over *n* qubits, then

$$Pr\left(\chi_{\delta}(|\phi\rangle) \ge (1-\delta^2)^2 \frac{2^n}{\operatorname{poly}(n)}\right) \ge 1 - o(1)$$

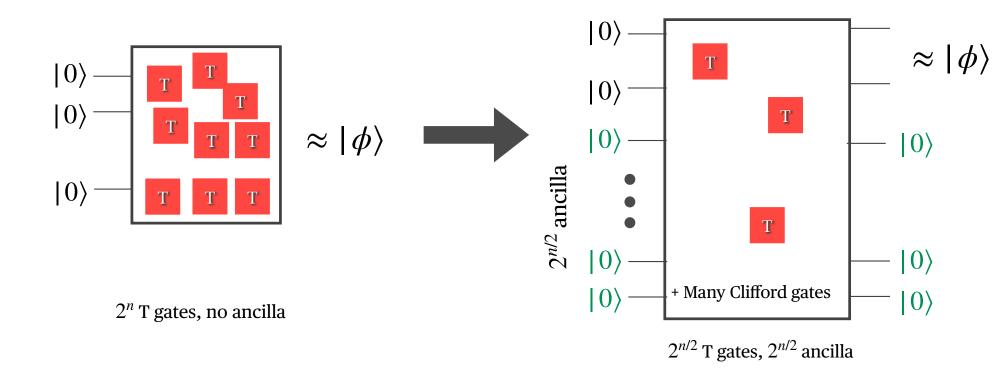
Proof idea:

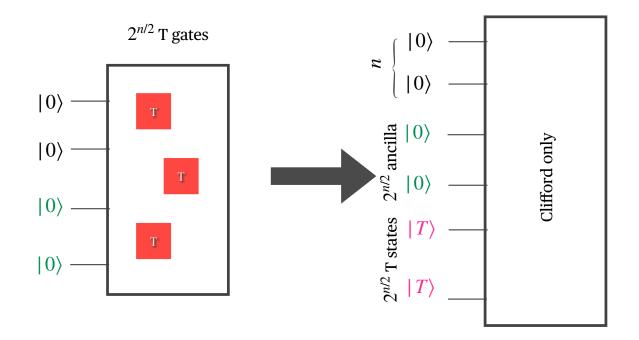
Let $|s_1\rangle, ..., |s_r\rangle$ be a collection of r stabilizer states and $|\phi^{\parallel}\rangle$ be the projection of $|\phi\rangle$ onto span $\{|s_1\rangle, ..., |s_r\rangle\}$. $|||\phi^{\parallel}\rangle||$ strongly concentrates a small value when $r < \frac{2^n}{poly(n)}$ We use union bound over different collections of stabilizer states



Theorem 2: (LKS 18)

Starting from $|0...0\rangle$ any quantum state over *n* qubits can be constructed using $2^{n/2} T$ gates, $2^{n/2}$ ancilla qubits and many Clifford gates





Lemma 3: Stabilizer rank does not change under gate teleportation

Putting it all together:

 $\chi_{\delta}(|0^{n+\lambda}\rangle |T\rangle^{\otimes 2^{n/2}}) \ge \chi_{\delta}(|0^n\rangle |\phi\rangle) \ge 2^{n-o(1)}$

Change of variables: $m = 2^n \implies \chi_{\delta}(|T\rangle^{\otimes m}) \ge \tilde{\Omega}(m^2)$

Discussion and open questions:

Going beyond quadratic bounds:

Idea 1: Other random ensembles? For Haar measure our bounds are almost tight **Idea 2:** If $\chi_{\delta}(|\psi\rangle \otimes |\phi\rangle) > 2^{(1+\epsilon)n}$ for random *n* qubit states may imply stronger lower bounds

Any deeper complexity theoretic insights?

Previous results used a "natural" property of low stabilizer rank states We prove lower bound from an upper bound (state synthesis) problem

• Other physical particles (Bosons, Fermions, ...)

Thank You!

Discussion and open questions:

Going beyond quadratic bounds:

Idea 1: We need a "pseudo-random" state that has high stabilizer rank but requires few T gates to prepare.

Idea 2: Stabilizer rank is extensive for random states. I.e. If $|\psi\rangle$ and $|\phi\rangle$ random states then $\chi_{\delta}(|\psi\rangle \otimes |\phi\rangle) > (\chi_{\delta}(|\psi\rangle)\chi_{\delta}(|\phi\rangle))^{1/2+\epsilon}$ It is enough to show this for $\epsilon \sim \frac{1}{\sqrt{n}}$, $\delta \sim \frac{1}{2^n}$. We can show this for $\epsilon = 1/2, \delta = \frac{1}{2^{2^n}}$.

Barrier to proving stronger bounds?

All the previous techniques (Labib, Peleg, Shpilka, Volk, Lovitz, Steffan 2022) stopped at the linear lower bound. They had one thing in common they used **a property of low stabilizer ranks**. In a way **they gave a natural proof**!

Our work does not use a property. We rather reduce the lower bound question to an upper bound on a state synthesis problem.

Is there a deeper complexity theoretic insight involved?

• Other directions

Conditional lower bounds:

We can show that exact stabilizer rank is superpolynomial unless permanent has short circuits.

Can we say the same thing about approximate rank?

Bosonic Gaussian rank

Question: Decompose $z_1 \dots z_n$ into sum of Gaussian Holomorphic functions