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Main question:

How hard is it to simulate quantum computations
on classical computers?

Can we rigorously separate P and BQP? » Would imply P # PSPACE

Can we rigorously show specific simulation
techniques will take exponential time?

This talk



What is a quantum bit?
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Quantum operations are
given by unitary matrices
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Special quantum operations
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Clifford + T gates are universal T — I 0
for quantum computing




Gottesman-Knill Theorem:

Starting with Stabilizer states,

Clifford gates can be simulated efficiently

What is a stabilizer state?
We say A stabilizes |y), if A |y) = |y)
Pauli group &P = {e™™A,; Q@ ... QA, : A, € {I.X,Y,Z},m € {0,1,2,3}}
A quantum state is called a stabilizer state if there is a (Abelian) subgroup of

P that stabilizes it.

Fact: Stabilizer states are exactly states that can be generated by Clifford

operations, starting from |0...0)



Single qubit stabilizer states:

“Special discrete subset of quantum states
that are stabilized by Pauli strings.”

Credit: Jonas Anderson et. al. UNM



The T state Magic state teleportation:

Clifford circuits on specific “magic” sates can
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Example: 1 qubit
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How hard is it to simulate the following circuit?

If | ) is a stabilizer state then we can do it in polynomial time.

What if | ) is not a stabilizer state?

It depends on the stabilizer rank of | ¢)!
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Xs(| ¢)) minimum number r s.t.

Exactrank: 6 =0

Approximate Stabilizer rank:

| ) =5c|s)) + ... +c.|s,) s stabilizer states.

Bravyi Gosset 2016:
Universal quantum circuits using m1 gates
can be approximately simulated within
error O(5) in time poly(n) X ys(| T)®™).

Proof idea: Teleport T gates to simulate the computation
using Clifford gates on | 7')®™ states. Decompose the

computation into y, Gottesman-Knill algorithms

(each taking poly(n) time).

Upperbound:
)(( | T>®n) — 0(20.396311)

(Qassim-Pashayan-Gosset 2018)

Question:

Can we show that
(1 T)®8") = 2%

We better do, otherwise

BQP has a fast classical simulation :-)



Previous bounds on stabilizer rank

Bravyi Smith Smolin 2016

Peleg, Shpilka, Volk, 2022

Labib, 2022

Lovitz, Steffan 2022

M, Tahmasbi 2023
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Linear algebra techniques,
complexity reductions

Higher order Fourier
analysis

Number theory

Probabilistic method

'+ quantum state synthesis



Williams CCC 2018: For any k there is a function f : {0,1}" — {0,1}
r

Major open question in NP such that that in any decomposition f(x) = Z ci(— 12 into
P # NP? i=1

quadratic phases r > nk.

Open question:
Can we prove the same thing for functions in P?
Can give an example of a function in P which requires r = w(n)

ion?
Can we show that NP-complete problems do representation’

not have short representation within a specific

. . . M, Tahmasbi 2023: an example of a function that requires Qn? terms
model? (e.g. circuits with specific structure, ...) P 9 (n%)

Open question:
Quadratic uncertainty principle

Specific model: linear combination of an
overcomplete functional basis. Show that the AND i.e. (_ l)xl"‘xn

In particular quadratic phases function requires exponential
representation into quadratic phases



Proof of our result:

Step 2:

We can prepare arbitrary
state using ~ 2"/ number
of 1’ gates
(and many ancilla qubits)

Step 1:
Approx Stabilizer rank

of a random state is

~ 21’1

Step 3:
We can teleport T gates into 7°
states

Step 2 is based on a non-trivial result of Low, Kliuchnikov and Schaeffer from 2018 (LKS 18)
that we can synthesize arbitrary quantum states using QM2 T gates and many ancilla qubits



Theorem 1: If | ¢) is sampled from the Haar measure over n qubits, then

n

Pr <)(5( ) > (1 — 52)22—> >1-0(1)
poly(n)

Proof idea:

Let|s;), ..., |s,) be a collection of r stabilizer states and

| ') be the projection of | ¢) onto span{ |s,),...,|s,.)}.
21’1

poly(n)
We use union bound over different collections of stabilizer states

Il| @ ”) || strongly concentrates a small value when r <

span|sl) P |S,)



Theorem 2: (LKS 18)

Starting from | 0...0) any quantum state over n qubits can be constructed using

22 T gates, 2" ancilla qubits and many Clifford gates
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Step 3: Perform gate teleportation
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Lemma 3: Stabilizer rank does not change under gate teleportation

Putting it all together:
25107 [ TYE2) > (10 | ) 2 270
Change of variables: m = 2" = y;(|T)®™) > Q(m?)



Discussion and open questions:

+ Going beyond quadratic bounds:
Idea 1: Other random ensembles? For Haar measure our bounds are almost tight

Idea 2: If y5(|w) ® | ¢)) > 2046 for random n qubit states may imply stronger lower bounds

« Any deeper complexity theoretic insights?
Previous results used a “natural” property of low stabilizer rank states
We prove lower bound from an upper bound (state synthesis) problem

- Other physical particles (Bosons, Fermions, ...)



Thank You!



Discussion and open questions:

- Going beyond quadratic bounds:

Idea 1: We need a "pseudo-random” state that has high stabilizer rank but requires few T
gates to prepare.

Idea 2: Stabilizer rank is extensive for random states.
e If |w) and | ) random states }hen x5( l{f> ® 19)) > (rs(ly)xs(1 )+

It is enough to show this fore ~ ——, 0 ~ 5 We can show this for € = 1/2,0 = ﬁ
n



- Barrier to proving stronger bounds?
All the previous techniques (Labib, Peleg, Shpilka, Volk, Lovitz, Steffan 2022) stopped
at the linear lower bound. They had one thing in common they used a property of
low stabilizer ranks. In a way they gave a natural proof!

Our work does not use a property. We rather reduce the lower bound question to
an upper bound on a state synthesis problem.

Is there a deeper complexity theoretic insight involved?



« Other directions

Conditional lower bounds:
We can show that exact stabilizer rank is superpolynomial unless permanent
has short circuits.
Can we say the same thing about approximate rank?

Bosonic Gaussian rank
Question: Decompose Z;.. .z, into sum of Gaussian Holomorphic functions



